MISSA Project: focus on Model-based safety assessment for the three stages of refinement of the system development process in ARP4754A

Airbus: Matthias Bretschneider, *Chris Papadopoulos*

Alenia Aeronautica SpA: Antonella Cavallo

Cassidian-APSYS: Jean-Pierre Heckmann, Laurent Sagaspe

Dassault Aviation: Valerie Sartor

Foundation Bruno Kessler: Marco Bozzano

ONERA: Pierre Bieber, Rémi Delmas, *Christel Seguin*

OFFIS: Eckard Boede

Prover Technology AB: Johann Deneux

University of York: Oleg Lisagor

Thales: Marion Morel
MISSA project

- More Integrated System Safety Assessment
 - FP7 EU project 2008-2011 project
 - coordinator Airbus

- Scope: safety assessment at complementary design stages
 - From specification of aircraft function
 - To design of aircraft system architecture
 - Until detailed design of systems
MISSA approach:
- Safety assessment based on formal simulation models (cf new ARP 4761)

Talk focus:
- support of:
 - PASA/PSSA
 - Safety requirement allocation
 - SSA
Need: Assess preliminary design against safety requirements

- Ex: A failure condition (FC) severity and derived requirements
 - FC: Unannounced loss of deceleration capability on ground is CAT
 - Quant. Req.: The FC occurrence probability shall be less than 10^-9/F H under hypothesis about system check interval
 - Qual. Req.: No single failure shall lead to the FC
 - DAL Req.: Development Assurance Levels (DAL) of functions/items shall be compliant with ARP4754A rules.
Approach

- **Scope:** Aircraft functions, mono / multi ATA systems
- **Build abstract models of failure propagation in the system**
 - Use automata-like + Boolean modeling languages,
 - Model the dynamic of each system component
 - Connect the component to reflect the system architecture
 - Add observers of system FC
- **Assess the model against safety requirements with available tools**
 - Extract from the models fault trees / cut sets of FC with model dedicated tools
 - => check of Qual. Req and DAL
 - Apply traditional tools to cut sets / tree for quantitative assessment
Experimental feedback

- Need for user's modeling guideline
 - Failure Logic Modeling: close to fault tree style
 - Vs Failure Effect Modeling: close to design model style

- Tools are available
 - Mature enough for 1 ATA assessment
 - e.g. Cecilia OCAS from Dassault Aviation
 - Encouraging results both for
 - models of aircraft functions
 - Multi-ATA models
MISSA integrated case study
MISSA assessment results

<table>
<thead>
<tr>
<th>System</th>
<th>Organisation Responsible</th>
<th>Model Features</th>
<th>Analysis Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheel Braking System</td>
<td>Airbus (UK)</td>
<td>FEM</td>
<td>517</td>
</tr>
<tr>
<td>Ground Spoilers & Thrust Reversers</td>
<td>EADS APSYS</td>
<td>FEM</td>
<td>111</td>
</tr>
<tr>
<td>Weight on Wheels</td>
<td>Dassault Aviation</td>
<td>FEM</td>
<td>35</td>
</tr>
<tr>
<td>Integrated Modular Avionics</td>
<td>THALES</td>
<td>FEM/FLM Hybrid</td>
<td>80</td>
</tr>
<tr>
<td>Electrical Power Distribution</td>
<td>Alenia Aeronautica</td>
<td>FEM/FLM Hybrid & ‘pure’ FEM</td>
<td>~30</td>
</tr>
<tr>
<td>Hydraulic Power Distribution</td>
<td>Airbus (Germany)</td>
<td>FEM/FLM Hybrid</td>
<td>78</td>
</tr>
</tbody>
</table>
Need: Assess detailed design against safety requirements and functional safety requirements

Approach
- Use existing design model (e.g. Simulink / Scade models)
- Inject failure modes
- Use previous assessment tools + model checkers

Experimental feedback
- Detailed models are not easily "provable"
 - Hybrid models mixing discrete and continuous time evolution laws
 - Timed models, to reason about system delays
- Tools developed in MISSA
 - Encouraging results: application to toy industrial case studies
Safety requirement management - 1

- Need 1: verify / generate the safety requirements allocation
 - Input =
 - Initial system safety requirements
 - System model or cut sets leading to the system FCs
 - User optimization criteria
 - Output = valid safety requirements applicable to the component of the system
 - failure rates, check interval, FDAL, independence groups

- Approach: two tools solving problems of optimal allocation
 - Opt-Alloc: preliminary design exploration taking into account various user criteria (weight, cost of equipments, ...)
 - DAL-calculator: allocation of average risks and FDAL taking into account standard recommendations
Experimental feedback for DALculator

- From small examples …
 - Performances: DAL, Probability (<1 sec)
 - Data display
 - Nbr of Mincuts: From 11 to 51 (order 3 to 9)
 - Deceleration function
 - Nbr of Mincuts: From 4 to 68 (order 2 to 4)

- … to larger examples
 - Electrical System
 - Nbr of Mincuts: from 300 to 1800 (order 3)
 - Performances: DAL(< 10 sec), Probability (from 5 min to 40 min)
 - MISSA Common Case-Study
 - Nbr of Mincuts: 3000 (order 3)
 - Performances: DAL(< 5 min)
Safety requirement management - 3

- Need 2: reason on "safety contract"
- Approach: tools to assess design following contracts paradigm
 - Assumptions
 - Reflect current degree of knowledge of anticipated design context
 - Determine boundary conditions on actual design context
 - Guarantee
 - Is guaranteed if component is used in assumed design
- Experimental feedback
 - Applied to ARP4754 braking systems
Conclusion

- MISSA provided a comprehensive set of methods and tools to assist
 - Safety requirement management
 - Requirement assessment on formal models
 - At various design stages: from aircraft function to system design
- All proposals have been tested on industrial case studies
 - Good maturity level of PSSA by existing tools
 - More experiments are needed for other promising tools
- For more details http://www.missa-fp7.eu/