HorizonUAM: Safety and Security Consideration for Urban Air Mobility

Bianca I. Schuchardt¹, Christoph Torens²

DLR – German Aerospace Center
DLR Institute of: ¹Flight Guidance, ²Flight Systems

3rd OPTICS2 Workshop:
Towards SAFE and SECURE Urban Air Mobility
7 September 2021
HorizonUAM Project Framework

- Urban Air Mobility (UAM) research, focus on urban air taxi services
- DLR internal research project, initiated by DLR executive board
- 07/2020 – 06/2023
- 10 DLR institutes and facilities involved
 - Flight Guidance
 - Combustion Technology
 - Flight Systems
 - Air Transport and Airport Research
 - Communications and Navigation
 - Air Transportation Systems
 - Aerospace Medicine
 - System Architectures in Aeronautics
 - Atmospheric Physics
 - Unmanned Aircraft Systems
- Project budget 9.0 M€
Project Content

- UAM system simulation
 - Scenarios, demand forecast, economy
- Vehicle
 - Vehicle family concepts, system technology, cabin
- Safety/Security
 - Autonomy, multi sensor navigation and communication, risk assessment, U-space concept
- Vertidrome
 - Infrastructure, flight guidance, UAM network management, airport integration
- Acceptance
 - Acceptance of civil drones and air taxis, citizen participation
- Demonstration/Assessment
 - UAM cabin simulator, tower simulator, scaled flight guidance/ navigation demonstrations
UAM as a System

Further reading:
• Schuchardt et al., Urban Air Mobility Research at the DLR German Aerospace Center – Getting the HorizonUAM Project Started, AIAA Aviation 2021, 08.2021
• L. Asmer et al., Urban Air Mobility Use Cases, Missions and Technology Scenarios for the HorizonUAM Project, AIAA Aviation 2021, 08.2021
Vehicle Family Concepts

<table>
<thead>
<tr>
<th>Aircraft architecture</th>
<th>Multirotor</th>
<th>Quadrotor</th>
<th>Lift+Cruise</th>
<th>Tiltrotor-wing</th>
<th>Vectored Thrust</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disc loading</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hovering efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Downwash speed & noise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward flight speed & efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gust resistance and stability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preferred use case</td>
<td>Air taxis (inner-city point-to-point services)</td>
<td>Air taxis and airport shuttles</td>
<td>All</td>
<td>All</td>
<td>Airport shuttles and intercity</td>
</tr>
</tbody>
</table>

Further reading:
- P.S. Prakasha, et al., Towards System of Systems driven Urban Air Mobility Aircraft Design, DICUAM, 03.2021

Figure based on: Roland Berger GmbH, "Urban Air Mobility the Rise of a New Mode of Transportation," Nov. 2018.
Vertidrome

Further reading:
- K. Schweiger et al., UAM Vertidrome Airside Operation: What needs to be considered?, DICUAM, 03.2021
- K. Schweiger et al., Urban Air Mobility: Vertidrome Airside Level of Service Concept, AIAA Aviation 2021, 08.2021
- F. Naser et al., Air Taxis vs. Taxicabs: A Simulation Study on the Efficiency of UAM, AIAA Aviation 2021, 08.2021
- K. Schweiger, UAM Vertidrome Operationen - Vision als Treiber der aktuellen Forschung, to be presented at DLRK 2021, 09.2021
Public Acceptance

• Analysis of public acceptance towards civil drones and air taxis
• Participatory noise measurements
• Perception of drones and air taxis by pedestrians
• Air taxi passenger interaction and comfort

Further reading:
• A. End et al., Gender differences in noise concerns about civil drones, ICBEN Congress on Noise as a Public Health Problem, 06.2021
• I. Moerland-Masic, et al., Urban Mobility: Airtaxi Cabin from a Passengers Point of View, Comfort Congress 2021, 9.2021
Demonstration and Assessment

- Tower simulation for integration of UAM at airports
- Scaled flight demonstrations for showing communication, navigation and flight guidance concepts with drones in model city
- Final assessment of chances and risks associated with UAM
- Annual HorizonUAM Symposium
Safety and Security Overview

- Challenges, gaps, and research outline on safety and security
 - Safe Autonomy
 - Reliable Multi-Sensor Navigation
 - Robust and Efficient Communication
 - U-space and Safe Air Traffic
 - Cyber-Physical Safety and Security

Further reading:
- P. Nagarajan et al., ASTM F3269 - An Industry Standard on Run Time Assurance for Aircraft Systems, AIAA Scitech 2021, 01.2021
- S. Schopferer, et al., ML Applications in Unmanned Aviation: Operational Risks and Certification Considerations, Machine Learning in Certified Systems - DEEL Workshop, 01.2021
- Becker et al., Approach for Localizing Scatterers in Urban Drone-To-Drone Propagation Environments, EuCAP European Conference on Antennas and Propagation, 03.2021
- C. Torens et al., HorizonUAM: Safety and Security Considerations for Urban Air Mobility, AIAA Aviation 2021, 08.2021
Safe Autonomy

- Challenges related to safe autonomy
 - Missing pilot is equivalent to a missing fallback layer
 - Artificial intelligence (AI) and machine learning as new technologies
 - Verification aspects and achieving a high level of safety for autonomous functions

- Discussion / Gaps
 - Regulatory, standards and certification aspects of AI
 - Regulation and standardization efforts ongoing

- Research on increasing safety of autonomous operations
 - Literature study, categorization of verification methods
 - Establish toolchain for assessment of the safety of autonomous functions
 - Automation of supervision tasks and self-awareness
Reliable Multi-Sensor Navigation

- Challenges for reliable urban navigation
 - Strong GNSS multipath in urban environment
 - Non-line-of-sight (NLOS) to some satellites
 - GNSS interference
 - Constraints from cost and size requirements

- Discussion / Gaps
 - Certification process for multi-sensor solutions
 - Required performance for UAM navigation
 - Accuracy, integrity, continuity, availability

- Research of a multi-sensor navigation system
 - Airborne equipment (multi-sensor onboard unit)
 - Ground infrastructure (differential GNSS augmentation, visual cues)
 - Innovative multi-sensor solution leading to integrity-monitoring architecture
Robust and Efficient Communication

- Challenges for robust communication
 - No existing system for UAM
 - High mobility of vehicles in 3D plane
 - Non-line-of-sight (NLOS) conditions
 - Strong multipath propagation
 - Efficient usage of shared resources

- Discussion / Gaps
 - Requirements for collision avoidance
 - Latency, bandwidth, availability, …

- Research on communication concepts
 - Channel model for UAM scenarios
 - Air to air (A2A)
 - Air to infrastructure (A2I)
 - Propagation characteristics in urban environments
U-Space and Safe Air Traffic

- Challenges for U-space and Safe Air Traffic
 - U-space services not yet available
 - Currently time plan delayed
 - Low-altitude bands frequented by birds / drones

- Discussion / Gaps
 - Required U-space services
 - On-board sensor requirements to detect and identify birds and drones

- Research supporting U-space development and birds / drones collision avoidance
 - Flight demonstrations evaluate and identify required information from U-space
 - Requirements of impact resistance to avoid damage in case of collision
 - Filling the gaps
 - Prototype U-space services: Vertidrome management
 - Collision avoidance and flight path prediction of birds and drones
Cyber-Physical Safety and Security

- Challenges for cyber-physical safety and security
 - Prevention, detection, response and mitigation of diverse attack vectors (see figure)
 - Shared situational awareness for efficient crisis resolution

- Discussion / Gaps
 - Adapted definition of “Aviation Security”
 - Switch from transport system users being attackers to attackers acting remotely from anywhere

- Research and analysis of overall system
 - Critical operation procedures (e.g. take-off / landing)
 - Physical and cyber attacks and combinations
Conclusions

• Focus of the DLR’s HorizonUAM project lies on urban air taxi services, including
 • Vehicle design
 • Vertidrome infrastructure
 • Airspace integration and operation
 • Public acceptance

• Identification of challenges in safety and security for UAM in the discussed categories
 • Discussion of gaps and open questions for implementing UAM
 • Trust, standardization and regulation for increasing degrees of autonomy
 • Navigation performance requirements in urban environments
 • Communication performance requirements, specifically for collision avoidance
 • Required U-space services and level of automation and connectivity
 • Holistic approach for cyber-physical safety and security

• Project is in an early phase, work ongoing…
Join us at https://dlr.expert/horizonuam2021
Virtual symposium, free to register

Thank you for your attention!